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ABSTRACT

This paper introduces Audio Anywhere (AA), a framework for work-
ing with audio plugins that are compiled once and run anywhere.
At the heart of Audio Anywhere is an audio engine whose Digi-
tal Signal Processing (DSP) components are written in Faust and
deployed with WebAssembly.

Unlike previous work, Audio Anywhere does not just run in
the browser, in fact, the same portable plugin can run at close to
native speed on desktop, tablets, and low-power micro controllers
at the edge of the Internet of Musical Things network (IoMusT). It
is not our intention to push another audio module or plugin format,
rather we are developing Audio Anywhere as a proof that Faust to
WebAssembly, combined with HTML5 is a viable platform for
portable audio modules or plugins outside of the browser and even
on tiny micro-controllers.

In this paper we focus on an example instance of the frame-
work for the desktop, the use of Faust for DSP, lightweight Web-
views for Graphical User Interfaces (GUIs), and Rust as a hosting
language. The embedded audio platform Daisy is also targeted.
We describe our modifications to the Faust compiler, utilizing Rust
as an intermediate language to provide access to auto-vectorization
of WebAssembly (128-SIMD). A number of example modules are
discussed, demonstrating the utility of the framework.

1. INTRODUCTION

Things would be different one day. But you had to start
small, like oak trees.

Tiffany Aching

The ideal of compile once and run anywhere1 has been a dream
in computer science for as long as it has been an area of research.
From the early days of Lisp, through to Java and Python with its
import ideal. However, to date these offerings, as amazing as they
are, have failed to reach performance close to what system-based
languages C and C++ can achieve. Outside of general purpose pro-
gramming, certain Domain Specific Languages [1] have achieved
excellent performance. For example, in the domain of graphics
there are many, including GLSL [2], and in the audio domain the
language Faust [3] is an exemplar. However, both OpenGL Shad-
ing Language (GLSL) and Faust fall into the system-based lan-
guages camps of having to be compiled for each individual plat-
form. Faust is often translated into C++ code, that is then compiled

∗ This work was supported by UWE VC 2019 Award.
1A play on Sun Microsystems’ slogan "Write once, run everywhere

(WORE)".

Figure 1: Left is a hacked Casio VL-1 with an Electro Smith’s
Daisy running a AA Module, emulating a version of the VL-1 au-
dio engine. Right is the same emulation running in AA hosting
application.

offline for deployment, once for each target platform. GLSL is dif-
ferent as the OpenGL runtime provides routines for compiling to
a particular Graphics Processing Unit (GPU) dynamically, and the
most recent graphics Application Programming Interfaces (APIs),
most notably Vulkan [4], provide an intermediate representation,
called SPIR-V [5]. However, SPIR-V, like GLSL, is still designed
to be compiled ahead of time and does not easily support JIT style
compilation.

Over the last few years a new kid on the block has emerged
as an interesting inflection point in the search for a compile once,
run anywhere target for compiling system-based languages2. We-
bAssembly (or Wasm) is an open standard, originally developed
by the four main browser vendors, specifying a portable format
for executable programs, including interfaces for facilitating in-
teractions between such programs and their host environment [6].
Wasm came from the ashes of projects such as Adobe’s Flash and
Google’s Native Client, with the goal of providing a platform neu-
tral environment for running non Javascript code, as close to native
speed as possible, within a modern web-browser. Building on Em-
scripten’s [7] success in compiling the systems languages C and
C++ to JavaScript, WebAssembly provides a simple instruction set
and sand boxed environment for compiling "low-level" languages,
including C++, Go, and Rust to the web. Unlike the virtual plat-
forms of Java, .NET, and Python WebAssembly does not provide
garbage collection. Instead an abstraction of linear memory, a sim-
ply array of bytes, is provided, fitting naturally with the models of
C and C++.

The web browser is an amazing platform and the goal of one
day replacing desktop apps with web-apps running in the browser a
lofty one, however, while there have been some major advances in
real-time audio in the web, e.g. [8, 9, 10], latency limitations still
exist. Moreover, Digital Audio Workstations (DAWs) and other

2For the sake of this work we consider system-based languages to be in
the guise of C, C++, and Rust, but avoid any formal definition.
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audio software that support plugins still run outside the browser,
while additionally there are many capable embedded systems, that
are not suitable for a browser. The goal of this work is to be-
gin to explore if WebAssembly is a suitable compilation target for
real-time audio on the desktop, embedded desktops devices such
as the Raspberry Pi or Bela’s Beaglebone Black, and even embed-
ded micro-controllers, such as Electrosmith’s Daisy platform. As
visualized in Figure 2, we are interested in compile once to We-
bAssembly vs the compile n-times to native machine code, where
n is the number of platform OS/native instruction set combina-
tions.

In this paper we introduce Audio Anywhere as a small step
towards compile once, run anywhere for audio DSP code. Audio
Anywhere combines Faust, for audio DSP code, and HTML5 to
enable development of modern audio synthesis and effects tools.
The Faust DSP code is complied once into WebAssembly, but un-
like early work the resulting audio code is not hosted within a
browser, but instead translated on the fly to native code running
within a hosting application. This means that, in theory, an Audio
Anywhere module can run anywhere, including platforms where
browsers are not available. For the initial implementation of Au-
dio Anywhere, User Interfaces (UIs) can be described and imple-
mented in HTML5, but this is not a requirement, as the control
component is independent of the audio component. This enables
interfaces to range from conventional plugin GUIs, remote con-
trollers connected via the Internet of Musical Things, to Embedded
hardware interfaces.

To help validate Audio Anywhere’s approach we have devel-
oped a standalone hosting app that runs on Windows, Mac OS, and
Linux, a VST 2.x plugin host, and a tiny host that runs on the Daisy
Seed. To demonstrate the versatility of our approach we have de-
veloped a number of example synths and effects, that are compiled
once and run on all the platforms. For example, we developed a
clone of the Casio VL-1, which runs with a HTML5 interface on
the supported desktop platforms, but a variant also uses an actual
VL-1 hacked to control a Daisy, as shown in Figure 1.

More details on Audio Anywhere and links to the source code
are available from the project website3.

The remainder of this paper is structured as follows:

• Section 2 takes a look at related and background work;

• In Section 3 we introduce Audio Anywhere and some ex-
ample applications;

• Section 4, then describes the implementation of DSP algo-
rithms using the Faust programming language and HTML5
for Audio Anywhere;

• Section 5 evaluates the WebAssembly approach to a portable
DSP framework; and

• Finally, Section 6 concludes with pointers to future work.

2. BACKGROUND

There is a wide variety of work and technologies that are related to
and has inspired this current work. This section considers a few to
help provide context and plant seeds for future work, both in audio
DSP and Digital Musical Instrument (DMI) design.

The history of the modern Web includes the standardization
of what is now termed HTML5. Beginning with work by Mozilla,

3https://muses-dmi.github.io/projects/.
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Apple, and Opera begun in the mid 2000s, which pushed the Web
towards technology capable of running 3D Games, real-time au-
dio, and more. Javascript is at the heart of today’s Web technology
and Just In Time (JIT) compilers such as the V8 engine, provide
amazing performance, however, it is not without its drawbacks and
it is often hard to predict an application’s performance. To address
some of the performance unknowns of JIT JavaScript compilation
Alon Zakai, at Mozilla, developed Emscripten [7], a compiler for
C and C++ that targeted a subset of JavaScript, called Asm.js4,
which enabled performance characteristics closer to native code.

Building on Asm.js success, Mozilla and the other popular
browser developers came together to specify WebAssembly[6], a
binary instruction format for a stack-based virtual machine that tar-
gets the web. WebAssembly emerged at a similar time as other in-
novations in web technology, in particular, Worklets5, that in com-
bination enable low-level access to both the rendering pipeline and
low-latency audio within the browser.

A wide selection of proposals for real-time audio on the web
have emerged during this fruitful time for development and in par-
ticular, building on from work on the Web Audio API [8], recent
proposals have introduced Native Web Audio API Plugins [10]
and Faust for the Web [11]. Faust for the Web saw its compiler
being extended with a new backend that specifically targeted We-
bAssembly for the audio DSP code. An important difference in
our approach is that Audio Anywhere does not target the web,
although it is easy to see that it could indeed be applied there.
WebAssembly’s development is tightly linked to that of the Rust
programming language and there are a number of possible benefits
that might be gained by utilizing Rust as an intermediate language
for Faust, before compiling to WebAssembly, and the approach is
investigated here. One feature that has been enabled by using Rust
as an intermediate language is the ability to have Rust’s LLVM
compiler apply auto-vectoriazation to Faust’s resulting compute
loop.

The design of portable GUIs is difficult and in the development
of Digital Musical Instruments often complicated by the use of

4https://en.wikipedia.org/wiki/Asm.js.
5https://developer.mozilla.org/en-US/docs/Web/

API/Worklet.
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Figure 3: Audio Anywhere Module

tactile controls that go beyond the QWERTY keyboard and com-
puter mouse. While C++ frameworks such as GTK and Qt have
gone a long way to address early issues with GUI toolkits, they
are still often limited to certain platforms and not easy to access
for many programmers. The introduction of Electron6, a cross-
platform toolkit for building applications with JavaScript, HTML,
and CSS, showed again the promise of Web technology for appli-
cation development. In particular for GUI applications that could
be written in modern web technologies, and customized to the look
and feel required by the application developer, not, necessarily,
matching the native look and feel of the host OS. A downside of
Electron is the dependency on NodeJS and Chromium. With the
development of Audio Anywhere we were keen to support desk-
top applications with modern custom GUIs, but at the same time
wanted to avoid the heavy dependencies that Electron introduces.
Instead we chose to use light weight Webviews7, aiming to utilize
a common HTML5 UI abstraction layer for the most widely used
platforms.

3. OVERVIEW

In this section we give an overview of Audio Anywhere, introduc-
ing some of the tools and ideas. In general, an Audio Anywhere
application is made up of a DSP component, that consumes and
produces audio samples at the block level, a control component or
UI, and a host.

The DSP component is delivered as WebAssembly, that con-
forms to a specified API and is the same for all platforms and
hosts8. The code compiled to generate the WebAssembly can be
from any language, however, the resulting WebAssembly can de-
pend only on functions and values defined by the AA external li-
brary. This enables portability requirements to be stated for all
AA modules. The control or UI components are independent of
the DSP component and currently AA supports UIs developed in
HTML5 for desktop platforms, and a simple physical control li-
brary for embedded Daisy platforms. This latter library currently
provides support for buttons, potentiometers, and Bela Trill capac-
itive touch sensors9.

An AA hosting application is not formally specified, other
than to state that they should be compatible with loading AA DSP
code and one of the supported UI models. For example, the stan-
dalone desktop host can dynamically load and unload AA mod-
ules, consisting of AA DSP Wasm and HTML5 interface, while
the Daisy firmware loads a predetermined AA DSP Wasm and has
a UI baked in directly. To enable dynamically loading and unload-
ing of AA components a notion of AA module is defined. An AA
module or bundle contains everything necessary for the instrument

6https://www.electronjs.org/.
7https://github.com/webview/webview.
8In fact as WebAssembly Single Instruction Multiple Data (SIMD) sup-

port is still limited, 128 vector SIMD is optionally supported.
9https://bela.io/products/trill/.
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Figure 4: Audio Anywhere Module Compilation

to work within a specified host, in particular, the AA DSP Wasm
and UI components, and a description of how they are connected
together.

AA does not directly provide support for control standards
such as MIDI or OSC, but the AA API provides entry points that
can easily handle values produced by incoming control, note on,
and off messages. All of the current hosting applications provide
support for a subset of MIDI.

In general, AA DSP code can be written in any language suit-
able for compiling to WebAssembly, in this paper we focus on DSP
code written using Faust. The following subsections provide more
detail of our current design and implementation, beginning with
AA modules, then looking at the use of HTML5, and finally intro-
ducing faust2audioanywhere, a tool for compiling Faust to
AA DSP Wasm, via Rust. This is followed by details of the im-
plementation, with particular focus on Faust to AA DSP Wasm, in
the Section 4.

3.1. Audio Anywhere Modules

An AA module is currently defined in terms of its DSP code, a UI
component, and meta-data used to load a module dynamically at
runtime. While AA’s module definition does not specify anything
about how the UI component should be implemented, a particular
AA hosting application is likely to do so. For example, we have
currently implemented a standalone hosting application for desk-
top (Windows, Mac OS, and Linux) and Raspberry Pi (Linux) that
requires UIs to be implemented in HTML5. An AA module in
this case is encapsulated as a ’bundle’ of all these components, as
visualized in Figure 3.

An AA modules is defined in terms of these components and
assuming they implement the defined AA Wasm and UI APIs,
given below, then the modules themselves can be implemented
with any framework or tools preferred by the user. To make the
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{
"wasm": [String],
"gui": String,
"info": {

...
"inputs": int,
"outputs": int,
...

}
}

Figure 5: JSON Representation of a AA Bundle

initial development of AA modules faster and easier we have de-
veloped a framework for building them. For audio components, a
modified version of the Faust compiler is used to implement audio
DSP from Faust’s DSP code, while the HTML5 UIs are written
with a small, no dependence, JavaScript framework. Figure 4, vi-
sually captures the compilation workflow, with Faust DSP code
compiled to Rust, which in turn is compiled to Wasm. The GUI
code is written in pure JavaScript, along with any necessary CSS,
and very minimal HTML. The resulting outputs are then combined
to form an AA bundle, which can be loaded and executed using a
WebAssembly virtual machine on a variety of different target plat-
forms. For desktop and Raspberry Pi a tiny cross-platform Web-
view library is used to render the HTML5 components, while on
embedded platforms, such as the Daisy10, UI elements are con-
nected to physical buttons, sliders, etc.

For simplicity a module’s bundle is currently defined with JSON,
a subset of which is shown in Figure 5. The key elements are de-
fined as follows:

• URL: module.wasm, implementing the Wasm API for au-
dio plugins;

• URL: gui.html, implementing the Javascript API for UI
plugins; and

• Set of configuration parameters, which are defined as part
of the module bundle itself and describe its capabilities, pa-
rameter mappings, and initialization constants.

3.2. Audio Anywhere Wasm API

An AA module must implement the AA API interface. The API is
specified in Rust, but with a C ABI11. The reasons for a C ABI are
twofold:

• Unlike native programming languages such as C++ or Rust,
C’s ABI is explicitly defined with no name mangling and
complex types;

• WebAssembly supports only a basic export and linking mech-
anism, which C ABI maps directly, without renaming of
symbols and so on. This avoids having to define the API in
Wasm itself, benefiting from the high-level abstractions of
C definitions.

As it is expected that not all uses of AA will utilize Rust, defini-
tions of the API are also provided as a C header file. An exemplar

10https://www.electro-smith.com/daisy/
11Abstract Binary Interface.

// initialize module
#[no_mangle]
pub fn init(sample_rate: f64)

// module meta data
#[no_mangle]
pub fn get_sample_rate() -> f64
#[no_mangle]
pub fn get_inputs() -> u32
#[no_mangle]
pub fn get_outputs() -> u32
#[no_mangle]
pub fn get_voices() -> i32

// parameters
#[no_mangle]
pub fn get_param_index(length: i32) -> i32
#[no_mangle]
pub fn get_num_params_float() -> u32
#[no_mangle]
pub fn set_param_float(index: u32, v: f32)
#[no_mangle]
pub fn get_param_float(index: u32) -> f32

#[no_mangle]
pub fn handle_note_on(mn: i32, vel: f32)
#[no_mangle]
pub fn handle_note_off(mn: i32, vel: f32)

// compute audio
#[no_mangle]
pub fn compute(frames: u32)

// input and output buffer management
#[no_mangle]
pub fn get_input(index: u32) -> u32
#[no_mangle]
pub fn get_output(index: u32) -> u32
#[no_mangle]
pub fn set_input(index: u32, offset: u32)
#[no_mangle]
pub fn set_output(index: u32, offset: u32)

// extern functions provided by AA Host
extern "C" pub fn set(index: u32, v: f32)

Figure 6: Subset of the Audio Anywhere Wasm API
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declare aavoices "2";

import("stdfaust.lib");

process = vgroup("voices",
par(n,

2,
vgroup("aavoice%n",

voice))) ;

voice = hgroup("midi", osc(freq))
with {
freq = hslider("freq",200,50,1000,0.01);
gain = hslider("gain",0.5,0,1,0.01);
gate = button("gate");
envelope =
en.adsr(0.01,0.01,0.8,0.1,gate)*gain;

osc(freq) = os.sawtooth(freq)*envelope;
};

Figure 7: Simple Faust DSP code for Synth

subset of the API is given in Figure 6. The particular subset is
representative of the API as a whole and is also close to the corre-
sponding Faust API, generated by our modified compiler, but also
the standard Faust API itself.

3.3. Generating DSP Structs with faust2audioanywhere

faust2audioanywhere is a command-line tool that can be
used to generate new DSP structures, in Rust, that are compatible
with the Audio Anywhere API. It is invoked as follows:

faust2audioanywhere synth.dsp

which produces a Rust source file, synth.rs. Implementa-
tion details of the resulting Rust file are given in Section 4. By de-
fault, it is assumed that there is only a single voice, but polyphony
can be enabled with an additional command line option. For ex-
ample, the following assumes a synth with 2 voices:

faust2audioanywhere -voices 2 synth.dsp

It should be noted that unlike the approach to multiple voices
described in [12], the number of requested voices must match that
defined in the Faust DSP implementation. More details on our
approach to polyphony is given in Section 4.2.

4. IMPLEMENTATION

This section gives details of the current prototype implementation
of Audio Anywhere, with particular focus on the Faust to Rust
compilation path for generating Wasm modules. Additionally, we
describe AA module hosting applications for the desktop and em-
bedded platform, including how AA Wasm modules are compiled
and run on Electrosmith’s Daisy.

For illustration throughout this section, the simple Faust synth
in Figure 7, will be used for reference.

Faust Rust

WASM

Rust

C++/C  x64

 ARM

Figure 8: Compilation flow for AA DSP Code.

4.1. Compiling Faust To Rust

Figure 8, shows the path of compilation for DSP code into an AA
Wasm module. In our particular case Faust, but, in general, the
DSP code can be written in any programming language suitable
for compilation to WebAssembly. The number of input and output
buffers is known at compile time and thus the resulting code can
vary on per-module basis. An additional set of arrays is allocated,
whose elements contain pointers to input and output buffers, re-
spectively. In practice this extra level of indirection is only neces-
sary to support chaining of AA modules within the Wasm address
space and is discussed in more detail in Section 4.3.

Figure 9 shows the general layout of memory for a module.
All memory is allocated statically when a module is loaded, as the
number of input and output buffers is known at compile time. For
simplicity it is assumed that a maximum buffer size, in our case
512, is defined, and allocations are done to meet this maximum,
even in the case when the actual required buffer size is less. In
most of our tests we assume a buffer size of 64, for example. While
this simplifies memory allocation, it does, in some cases lead to
over allocation, however, in practice we have found that the trade
of is quite small and compared to explicitly requiring a memory
allocator, a much smaller price to pay. Of course, for an embedded
target, where memory is often a scarce resource, this might not
always be the best choice.

As AA modules are closed under the API defined in Figure 6
the code generated by the Faust compiler is not externally acces-
sible and our implementation takes advantage of this with the in-
troduction of an additional compute function. The sole purpose
of this function is to setup the input and output buffers for the
Faust generated compute function. The code generated by the
AA Faust compiler for our running example is as follows:

pub fn compute_external(
&mut self, count: i32) {

let (output0, output1) = unsafe {
(::std::slice::from_raw_parts_mut(

IFC-5
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static mut INPUT : [f32; MAX_BUFFER] = [0.; MAX_BUFFER]  

static mut INPUT   : [f32; MAX_BUFFER] = [0.; MAX_BUFFER]  

static mut OUTPUT : [f32; MAX_BUFFER] = [0.; MAX_BUFFER]  

static mut OUTPUT   : [f32; MAX_BUFFER] = [0.; MAX_BUFFER]  

static mut INPUTS: [* const f32; NUM_INPUTS] = [0 as * const f32; NUM_INPUTS]  

0

m-1

n-1

static mut ENGINE: Dsp = Dsp { ... }  

static mut OUTPUTS: [* mut f32; NUM_INPUTS] = [0 as * mut f32; NUM_OUTPUTS]  

0

Figure 9: AA module static memory layout.

OUTPUTS[0], count as usize),
::std::slice::from_raw_parts_mut(

OUTPUTS[1], count as usize)) };
unsafe { self.compute(count, &[], &mut [

output0, output1]); }
}

Unlike the Faust compute function, compute_external
is externally visible, called by the AA API implementation itself,
and its only parameter is the number of samples to compute. It
constructs the slices required for the Faust compute function and
proceeds to call this function to actually perform the audio compu-
tation. In practice this function is marked as inline and is optimized
away completely, by the Rust compiler.

The original Faust compiler supporting Rust as a target lan-
guage produces a compute function that is hard to vectorize, at
least automatically, and thus runs considerably slower that the cor-
responding C++ code. This issue and corresponding solution was
discovered both during this work and also by Github user Bluenote10
(Fabian Keller)12, and benchmark results in Section 5 demonstrate
these performance differences.

Unlike C++, Rust provides certain safety guarantees includ-
ing array bounds checking. As it is not possible, in general, to
know the value for an index into an array statically, in the worse
case Rust must check each array access, as Faust’s compute func-
tion accesses input and output buffers in its hot loop. This bounds
checking was a key factor in causing the Rust generated audio loop
to be considerably slower than the equivalent C++, but it was not
the only one. Bounds checking adds considerable overhead, in
execution performance and also in code size, but it was also stop-
ping the LLVM auto-vectorizer from vectorizing the audio loop!
The solution to this performance bottleneck is well known to the
Rust community; rather than using traditional indexed for loops,
even ones that don’t have loop carry dependencies, recasting the
problem in terms of iterators and zippers allows the Rust compiler
to avoid generating bounds checked access, which in turn enables
LLVM to successfully apply its auto-vectorizer.

A subset of the generated compute function is given in Fig-
ure 10. Generated from our running example it highlights that the
output channels are initially separated out, enabling them to be
turned into iterators, mutable as they are outputs, followed by the

12https://github.com/bluenote10/
RustFaustExperiments/tree/master/Benchmarks.

#[target_feature(enable = "simd128")]
unsafe fn compute(&mut self,

count: i32, inputs: &[T], outputs: &mut
[&mut [T];2]) {

let [outputs0, outputs1] = outputs;
let (outputs0, outputs1) = {

let outputs0 =
outputs0[..count as usize]

.iter_mut();
let outputs1 =

outputs1[..count as usize]
.iter_mut();

(outputs0, outputs1)
};

...
let zipped_iterators = outputs0.zip(

outputs1);
for (output0, output1) in

zipped_iterators {
...

*output0 = ...
...

*output1 = ...
...

}
}

Figure 10: Subset of generated compute function.

process of (conceptually) zipping then into a single stream, which
finally can be iterated over.

The compute function must be marked as a target for the auto-
vectorization (enabled with the associated attribute). Additionally,
the AA Faust to Rust code generator utilizes the knowledge of
how many input and output channels the computation processes,
seen above in the outputs parameter’s array size. This plays
an important role in the first line of the compute function, en-
abling a fixed pattern match to deference outputs into its known
sub-components. This is necessary to avoid failures with the Rust
borrow checker in the presence of mutable references, which pro-
vides guarantees about aliases, which in turn provides invariants
that feed into LLVM’s auto-vectorizer. Without prior knowledge
of the number of input and output channels general pattern match-
ing can be used, but this comes at some additional overhead, in-
cluding handling the case when the pattern does not match.

A small library is provided by an AA host to give access to
features outside of the Wasm world, for example, Figure 6 in-
cludes the function set that enables sending messages from the
audio world to the GUI. This library is intended to be kept small
as any AA host must at least provide entry points, although imple-
mentations may differ. Beyond this, it is assumed that all AA mod-
ules are self contained, no support is provided for additional exter-
nal libraries, e.g. The WebAssembly System Interface (WASI) [13].
This is a key enabler for providing portability to embedded, bare
metal targets. To help enforce this requirement the attribute #![no_std]
is added to the generated Rust code, removing support for Rust’s
standard library. Crates, such as #wee_alloc13 are designed

13https://github.com/rustwasm/wee_alloc.
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with Wasm and embedded targets in mind and provide the ability
to be used without Rust’s standard library, and further more keep
code size to a minimum.

4.1.1. Parameters

Parameter handling is straightforward mapping "UI" definitions in
the Faust DSP code to data members in the resulting Rust code.
Following other Faust targets, parameters have setters and getters
indexed by an integer. As it is not possible to know up front the
mapping between parameters and indexes a function is generated
by the compiler mapping symbolic names (i.e. strings) to indexes.
To support polyphony this functionality is extended to handle pa-
rameters unique to each voice, see the following section for details.

Faust enables the definition of parameters to be constrained to
a range of values, including an initialization value and a step func-
tion. The parameter info functions, an example of which is given in
the following section, return this information enabling it to be past
to a host for coordination and configuration of UI components, for
example.

As already noted a key design goal was to avoid, as much as
possible, dependency on external crates, and to this end careful
design was required to enable global statics to not depend on run-
time initialisation. This meant crates such as lazy_static14 were
avoided. An additional issue with statics initialised with lazy_static
is it not possible define them as externally mutable, thus an ad-
ditional crate, such as mut_static15 is required. While the extra
dependency is unwanted it is also worth nothing that mut_static
introduces an additional level of indirection, which, in general, we
wanted to avoid.

4.2. Polyphony

As AA’s API is, in general, independent of Faust, our approach to
polyphony requires the DSP developer to implement support for
multiple voices directly in Faust and does not support the Faust’s
architecture file approach, as documented in [12], for example.

A new meta variable is added to Faust, aavoices declares
the number of required voices and Faust’s vgroup, named aavoicen,
where 0 ≤ n < numV oices, is combined with par to specify
the voices.

The AA backend for the Faust compiler generator is modified
to generate unique names for per voice controls, with a prefix rep-
resenting the particular voice. Two new functions are added to the
generated Rust implementation:

pub fn get_voices(&self) -> i32;

pub fn get_param_info(
&mut self, name: &str) -> Param;

The first, get_voices, returns the number of voices, while
the second, get_para_info, returns information about a given
parameter, including its index, used for setting and getting param-
eter values, and its initial value, min and max bounds, and the step
amount for incrementing and decrementing.

For example, the DSP code in Figure 7, specifies that the re-
sulting AA module supports 2 voices and each of the standard
Faust MIDI parameters, i.e. freq, gain, and gate, which is trans-
lated into the following:

14https://github.com/rust-lang-nursery/lazy-static.rs
15https://github.com/tyleo/mut_static

fn get_param_info(
&mut self, name: &str) -> Param {
match name {

"freq_v0" => Param {
index: 0,
range: ParamRange::new(

200.0, 50.0, 1000.0, 0.01) },
"gain_v0" => Param {

index: 1,
range: ParamRange::new(

0.5, 0.0, 1.0, 0.01) },
"gate_v0" => Param {

index: 2,
range: ParamRange::new(

0.0,0.0,0.0,0.0) },
"freq_v1" => Param {

index: 3,
range: ParamRange::new(

200.0, 50.0, 1000.0, 0.01) },
"gain_v1" => Param {

index: 4,
range: ParamRange::new(
0.5, 0.0, 1.0, 0.01) },

"gate_v1" => Param {
index: 5,
range: ParamRange::new(
0.0,0.0,0.0,0.0) },

_ => Param {
index: -1,
range: ParamRange::new(
0.0, 0.0, 0.0, 0.0)}

}
}

As is standard with Faust control parameters that are global,
i.e. shared for all voices, can be defined using OSC notation to
avoid being defined on a per voice basis. For example, the above
envelope could be defined with controls for attach, decay, sustain,
and release as follows:

voice = hgroup("midi", osc(freq))
with {

...
a = hslider("/v:envelope/Attack",

0.001, 0.001, 4, 0.001);
d = hslider("/v:envelope/Decay",

0.0, 0.0, 4, 0.001);
s = hslider("/v:envelope/Sustain",

1.0, 0.0, 1.0, 0.01);
r = hslider("/v:envelope/Release",

0.0, 0.0, 4.0, 0.01);
envelope = en.adsr(a,d,s,r,gate)*gain;
...

}

A downside to the approach taken by AA is in the case when
there is a single voice, i.e. monophonic. Currently the modified
Faust compiler requires that user specifies that there is a single
voice and wraps Faust’s par construct. For example, the follow-
ing code is taken directly from AA’s VL-1 emulation:
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Figure 11: Composing AA modules A and B into an audio graph

process = vgroup(
"voices",
par(n, 1,

vgroup("aavoice%n", waveforms))
) :> _ ;

Of course, the Faust compiler can optimize away any noise
introduced by the use of the par construct, but it still means port-
ing Faust mono synths requires work to fit with the AA model. It
would not be a huge amount of work to modify the Faust compiler
to avoid requiring this, although, to date we have not done so.

4.3. Composing Modules

It is possible to compose AA modules at the buffer level, i.e. the
output from one module can be passed to another module for con-
sumption, similar to how data is passed between plugins within
DAWs, for example16.

For AA modules to be composed together one module’s out-
put buffer(s) must become the input buffer(s) of another’s, as high-
lighted in Figure 11. It is not possible for a particular module to
know how it will be connected a priori, to other modules, and thus
the hosting application must configure the audio graph, connecting
module outputs to module inputs, via the set input and set output
functions that all AA modules support, as can be seen at the bot-
tom of Figure 6. To compose two modules the host application
implements the following algorithm:

16Per sample composition is not currently possible as it would require
merging at the level of the compute functions, but as Wasm is compiled in
place, it is reasonable to believe it is possible.

if mod1.get_outputs() == mod2.get_inputs()
for i in 0..mod1.get_inputs()

output = mod1.get_output(i)
mod2.set_input(i, output)

endfor
endif

While there is a cost of configuring a composed audio graph,
this is done once when the graph is configured. Furthermore, the
cost of copying external audio buffers in and the output buffers out
of Wasm’s linear memory is amortized more and more as the graph
grows.

The resulting functionality of module composition is similar to
that provided in DAWs, such as Ableton or Reaper, however, due
to the isolation of Wasm’s linear memory returning back to the
host between each module computing audio can lead to unwanted
memory copies, which in turn introduces overall latency into the
audio pipeline.

It is worth noting that module composition is independent of
how different UI elements are composed. For example, the AA
Muses synth17 has two audio modules, one for the 6 voice syn-
thesis engine, and another for its reverb effect, but there is only a
single UI.

4.4. Hosting AA modules on the Desktop

As part of Audio Anywhere initial research and development phase,
we developed a standard alone desktop application that runs on
Mac OS, Windows, and Linux (tested on Raspberry Pi), along with
a VST 2.x plugin, currently only supported on Mac OS. Both the

17https://github.com/bgaster/aa_examples/tree/
master/muses.
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Figure 12: Standalone AA Hosting Application, with Muses Nuke
synth loaded.

desktop application and plugin support for hot loading AA bundles
from a server and modules can be swapped in and out live. Addi-
tionally, the desktop application supports chaining of modules to
build more complex instruments. Figure 12, shows a screenshot of
the desktop application running on macOS, with the Muses Nuke
synth loaded.

The Wasm modules are Just In Time (JIT) compiled ahead-of-
time when loaded, and currently our backend supports two We-
bAssembly virtual machines, Wasmtime18, and Wasmer19. We
initially began with supporting only Wasmer as the WebAssem-
bly runtime of choice, however, we discovered that as the project
evolved, in particular, as the Faust compiler was modified to sup-
port Rust code generation that could be automatically vectorized
by LLVM and compiled to WebAssembly with SIMD-128 support,
Wasmer failed to load the resulting WebAssembly. At the time of
writing Wasmtime does not support the Raspberry Pi, but Wasmer
does provide support for Raspberry Pi 4 and for this platform we
disabled SIMD-128, due to stability issues.

In practice, we found Wasmer to be slightly faster than Wasm-
time for small functions, but this changed as more Wasm code was
executed per call. This is analysed further in Section 5.

4.5. Hosting AA modules on Daisy

Electrosmith’s Daisy20 is an embedded platform for creating high
fidelity, 192kHz, 24-bit stereo audio. At its heart is a STM32
ARM Cortex-H7 running at 480Mhz, features including a 32-bit
floating processing unit optimized for DSP, and 64MB of external
SDRAM. An image of the Daisy is given in Figure 13.

18https://github.com/bytecodealliance/wasmtime.
19https://wasmer.io/.
20https://www.electro-smith.com/daisy.

Figure 13: Electrosmith’s Daisy

// wasm audio buffer
static float * wasm_out_buffer;
// other globals go here

static void AudioCallback(float *in, float

*out, size_t size) {
hw.DebounceControls();

// handle VL-1 keyboard and button
events

// Wasm compute function
aa_compute(size);

for(size_t i = 0; i < size; i += 2) {
float sig = wasm_out_buffer[i];
out[i] = sig;
out[i + 1] = sig;

}
}

void initSynth(float samplerate) {
// setup Wasm runtime
init();
// initialize wasm AA module
aa_init((double)samplerate);

}

int main(void) {
float samplerate;
hw.Init();
samplerate = hw.AudioSampleRate();
initSynth(samplerate);

// start callbacks
hw.StartAdc();
hw.StartAudio(AudioCallback);

while(1) {}
}

Figure 14: Daisy Audio Application
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The Daisy can be programmed via the Arduino IDE, however,
the recommended path is to use the ARM Cross compiler for the
Cortex-M series, along with OpenOCD21 for connecting, program-
ming the flash, and debugging. libDaisy [14] provides a hard-
ware abstraction library for the Daisy, which provides easy access
to GPIOs, MIDI, and USB communication and can be used along
side DasiySP [15], providing additional DSP functionality. The
listing in Figure 14 shows basic setup for a Daisy AA application,
in this case for the VL-1 demo, including place holders for con-
necting to the Wasm world.

To evaluate the feasibility of Wasm on the Daisy we devel-
oped two prototype approaches. The first utilizes Wasm322, which
is a high performance WebAssembly interpreter written in C. The
main benefit of Wasm3 is that it requires very little memory, in the
order of 64k for code and 10kb for RAM, a key design factor when
considering an embedded platform such as Daisy. The biggest
downside of Wasm3 is one of performance, in this case Wasm3 is
4-5x slower than optimized Wasm JIT engines, and given that that
the requirements for real-time audio are high this is considered a
major drawback. That being said it was remarkably easy to get
going and our VL-1 emulation was able to run in real-time. How-
ever, other, more compute intensive, AA modules clipped, even at
44.1kHz, when using Wasm3 on the Daisy.

The second approach uses wasm2c from The WebAssembly
Binary Toolkit23. wasm2c converts Wasm binaries to portable C
code. The downside of wasm2c is that AA modules are converted
to C and then compiled to ARM Cortex-M machine code offline,
which goes against one of our key design goals of compile once,
run anywhere. At this time we don’t have an alternative path that
offers as good performance, along with the portability and sim-
plicity of Wasm3. To address this we have begun development of
a Cotex-M7 JIT compiler for AA Wasm modules.

In the case of both implementations a major factor was how to
manage Wasm’s linear memory. Wasm allocates memory in 64k
chunks, and for AA modules memory is populated with DSP state,
along with input and output audio buffers, but additionally the
Wasm runtimes require memory to allocate a modules function ta-
bles and other internal resources. In general, we found that Daisy’s
on-chip memory was not enough. Luckily, the Daisy comes with
64MB of external SDRAM, which while intended for audio sam-
ples, is an excellent resource for managing Wasm’s linear memory,
plus the additional resources needed by the runtime. The cost of a
full memory allocator was determined to be overkill for AA mod-
ules that, in general, are assumed to allocate memory statically,
thus, avoiding dynamic memory allocation in the audio task. As
such a simple and very compact Slab24 based allocator was imple-
mented, that supports allocating pages of 64k, with independent
pages allocated to the AA Wasm runtime and Wasm’s linear mem-
ory. In particular, pages allocated to Wasm’s linear memory are
guaranteed to be accessed directly by AA Wasm module code or
by memory that is "mapped" into the hosting applications address
space.

5. EVALUATION

In this section we present some early performance results for Au-
dio Anywhere. It is not the intention here to provide a deep dive

21http://openocd.org/.
22https://github.com/wasm3/wasm3.
23https://github.com/WebAssembly/wabt.
24https://en.wikipedia.org/wiki/Slab_allocation.
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Figure 15: Benchmark for null function.

into the performance characteristics of AA modules and appli-
cations, rather some preliminary results are presented, providing
some early evidence that AA’s use of Wasm as a compile once, run
anywhere target is practical.

The benchmark results presented in this section were performed
on a 2018 Mac Book Pro, with 2.9 GHz 6-Core Intel Core i9, 32
GB 2400 MHz DDR4, running macOS Catalina, version 10.15.6.
C++ was compiled with Apple clang version 11.0.3 (clang-1103.0.32.62),
compiled with -O3, and for Rust source rustc 1.47.0-nightly (6c8927b0c
2020-07-26, compiled with –release.

On the whole the remainder of this section focuses on Rust
compiled to Wasm compared against the same Rust code com-
piled to native x86-64. However, we first briefly consider the per-
formance of our modified Faust to Rust compiler. The following
table compares a simple DSP algorithm that copies a single chan-
nel input to a single channel output:

C++ Rust Rust Optimized
84860.747 MB/sec 3379.915 MB/sec 88353.927 MB/sec

The left hand column shows Faust code compiled via C++,
while the middle is the unmodified Faust to Rust compiler, and
finally the right hand column is the modified Faust to Rust com-
piler, which supports the optimizations described in Section 4. The
original Faust to Rust compiler is more than 20x slower than both
the C++ and the modified Faust to Rust compiler, with the now
optimized Rust code slightly faster than the C++ path.

For the Rust and AA Wasm benchmarks each benchmark was
run and results gathered with Criterion.rs25, a statistics-driven Mi-
crobenchmarking framework for Rust, with block sizes of 1, 16,
32, 64, 128, 256, 512, and 1024.

Figure 15, compares the performance of calling an empty func-
tion, i.e the cost of a function call. For the native code this is very
small and while more the cost of calling into Wasm for both the
Wasmtime and Wasmer runtimes is still low, although consider-
able slower in comparison.

Figure 16, compares a sine wave oscillator. Here again we
have included both Wasmtime and Wasmer runtimes, however, due
to a bug in Wasmer it failed to load the WebAssembly with 128-
SIMD generated code. As can be seen as the number of generated
audio samples increases per frame the Wasm code running under
Wasmer performance degrades considerably. Given that this is not
the case for the Wasmtime version, it seems likely that the lack of
128-SIMD is having a large impact on the performance of the Was-

25https://github.com/bheisler/criterion.rs.
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mer version. The performance of the AA Wasm module running
under the Wasmtime runtime is very promising and is within a 4x
slowdown. As the number of audio samples computed increases
the performance gap is fairly consistent.

Finally, Figure 17 reproduces the copy in and out benchmark
presented above in the context of C++ and Rust, but this time for
Rust and AA Wasm. The results do not include Wasmer as again
without 128-SIMD support it did not compare strongly. Wasmtime
again fares well compared to the native code, however, its perfor-
mance seems to slow down linearly in comparison. It likely that
again the overhead of calling into Wasm is playing a role, but it
does not seem to explain all of the performance differences. This
needs further investigation and remains an important area of future
work.

6. CONCLUSION

We are developing a general framework for audio modules that can
be compiled once and run anywhere. The project itself it part of
a larger ideal, that maybe we could dream of compiling large por-
tions of software just once and run close to native speeds, one day
surpassing Python and other high-level languages. This early work
shows the promise that maybe we are closer to that goal today than
ever before.

A key design goal of Audio Anywhere is for its API to follow
a C ABI. Unlike Faust this was deemed necessary as we required
a simple binary format specified with WebAssembly. While we
believe this comes with some benefits (it can be run almost any-
where) it does also come with some limitations and drawbacks.

In particular, this meant at times it was necessary to step outside
common approaches taken by Faust for portability. In particular,
our approach to handling polyphony is different to that commonly
used in Faust when combined with architecture files. Moreover,
GUIs are not directly derived from the Faust source code, and in-
stead Faust’s UI elements are utilised to provide mechanisms to
connect an externally developed UI with Faust’s internally gener-
ated parameter indexes. We do not propose this as an alternative to
Faust’s, but rather note that it can be interesting to consider differ-
ent approaches when your target is limited in certain ways, such as
is the case with WebAssembly.

A key advantage of our approach is the need to only com-
pile once, that’s it! In this case you compile the Faust DSP code
to Rust, using our modified Faust compiler, and then compile the
Rust code into a WebAssembly library. Additionally, if required,
a GUI can be developed using HTML5 and distributed alongside
the WebAssembly audio unit. This works well for the desktop
and we have found that given a 64-bit hosting OS, required for
the most current Wasm Virtual runtimes, both the portability and
performance are very usable. There is still work to be done for
embedded, the virtual machines are interpreters at the moment and
there is a real trade off between space and performance, particu-
larly in the case of including a real-time JIT compiler for Wasm.
For the Daisy we found that while interpreters work, the best trade
off between space and performance was to utilize wasm2c, com-
piling to a very neutral C and providing a library that provides the
Wasm runtime necessary to load the module. However, this goes
against the compile once, run anywhere philosophy and to address
this we have begun development of a tiny JIT that will load and
run an AA Wasm module, it is being designed specifically for AA
modules, targeting ARM Cortex family.

Early performance results show that the approach proposed by
Audio Anywhere is promising, but there is a lot more work to be
done to validate it more robustly. For one we plan to develop a
more extensive benchmark suite, running on a variety of different
platforms. Secondly, the cost of calling a Wasm function from the
host seems expensive and this needs to be better understood. Fi-
nally, more micro and macro tests need to be developed to demon-
strate how the performance scales to different scenarios.
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